Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells.
نویسندگان
چکیده
Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.
منابع مشابه
Sphingolipids, new kids on the block, promoting glomerular fibrosis in the diabetic kidney.
SISKIND AND COLLEAGUES have contributed greatly to our knowledge of the role of plasma membrane lipids, particularly glycosphingolipids, to the etiology of various kidney diseases. Using sophisticated methodologies for measuring kidney tissue and urinary levels of lipid biosynthetic substrates and products as well as catabolic and anabolic enzymes, they have provided evidence supporting a mecha...
متن کاملHistological changes of kidney in diabetic nephropathy
Diabetes mellitus is the most common cause of chronic renal disorders and end-stage kidney disease in developed countries. It is the major cause of dialysis and transplantation. Failure in renal function causes wide disorders in the body. Diabetes results in wide range of alterations in the renal tissue. It is believed that early histological changes in diabetic nephropathy are detectabl...
متن کاملRedox Signaling in Diabetic Nephropathy: Hypertrophy versus Death Choices in Mesangial Cells and Podocytes
This review emphasizes the role of oxidative stress in diabetic nephropathy, acting as trigger, modulator, and linker within the complex network of pathologic events. It highlights key molecular pathways and new hypothesis in diabetic nephropathy, related to the interferences of metabolic, oxidative, and inflammatory stresses. Main topics this review is addressing are biomarkers of oxidative st...
متن کاملMesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN.
Diabetic nephropathy is characterized early in its course by glomerular hypertrophy and, importantly, mesangial hypertrophy, which correlate with eventual glomerulosclerosis. The mechanism of hypertrophy, however, is not known. Gene disruption of the tumor suppressor PTEN, a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway, in fruit flies and mice demonstrated its role in siz...
متن کاملGrowth arrest-specific gene 6 is involved in glomerular hypertrophy in the early stage of diabetic nephropathy.
Nephropathy is one of the most common complications of diabetes mellitus. Glomerular hypertrophy is a hallmark in the early phase of the nephropathy. The mechanism of glomerular hypertrophy, however, remains incompletely understood. We have reported that Gas6 (growth arrest-specific gene 6) and its receptor, Axl, play a key role in the development of glomerulonephritis. Here we show the importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 309 3 شماره
صفحات -
تاریخ انتشار 2015